A/L COMBINED MATHS CALCULUS

LIMITS & DIFFERENTIATION

RAJ WIJESINGHE

- Show that $\lim_{x\to a} \frac{x^n a^n}{x a} = na^{n-1}$ and find following. 26.
 - $\lim_{x \to 1} \frac{1 x^{\frac{1}{3}}}{1 x^{\frac{2}{3}}}$
 - $\lim_{x \to k} \frac{x\sqrt{x} k\sqrt{k}}{x k}$ ii.
 - $\lim_{x \to -1} \frac{\frac{1+x^{\frac{1}{3}}}{1+x^{\frac{1}{5}}}}{\lim_{x \to 1} \frac{x^{5}-1}{x-1}}$ iii.
 - iv.
 - v.

- 29. Find the values of following.
 - $\lim_{x \to \infty} \left(\sqrt{3x^2 + x + 1} \sqrt{x^2 + x} \right)$
 - $\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^3 + \dots + n^2}{n^3}$ ii.
 - $\lim_{x \to \infty} \frac{4x^3 + x 1}{x^2 + 2}$ iii.
 - $\lim_{x \to \infty} \frac{5x^2 + x + 1}{x^3 + x^2 2}$ iv.

47.

i. Prove by geometrical methods that $\sin x < x < \tan x$ when $0 < x < \frac{\pi}{2}$. Deduce the limits of $\frac{\sin x}{x}$ when the value of x approaches zero across its positive values.

Find the values of

a)
$$\lim_{x \to 0} \frac{\sin 5x + \tan 7x}{6x}.$$

b)
$$\lim_{x \to 0} \frac{1 + x - \cos x}{\sin x}.$$

51.

- i. Find the value of $\lim_{x\to 0} \frac{\sqrt{4+x^2}-2}{x^2}$.
- ii. Find the value of $\lim_{x \to 7} \frac{\log_e x \log_e 7}{x 7}$.
- iii. Prove that $\lim_{\theta \to \frac{\pi}{4}} \frac{3\sin\theta 3\cos\theta}{\tan\theta \cot\theta} = \frac{3\sqrt{2}}{2}$.

52.

- i. Evaluate $\lim_{x \to a} \frac{\sqrt{5+x^2} \sqrt{5}}{\sqrt{20 + \sin^2 x} \sqrt{20}}.$
- ii. If $f(x) = \begin{cases} 1 & x \neq 1 \\ 1998 & x = 1 \end{cases}$ then does $\lim_{x \to 1} f(x)$ exist? Justify your answer.

54.

i. Evaluate
$$\lim_{x \to \sqrt{2}} \frac{x^4 - 4}{x^2 + 3\sqrt{2x} - 8}$$

- ii. Show that $\lim_{x \to 0} \frac{3^{x}-1}{\sqrt{1+x}-1} = 2 \log 3$.
- iii. Find the value of $\lim_{x \to \frac{\pi}{3}} \left(\frac{\sin x \sqrt{3} \cos x}{x \frac{\pi}{3}} \right)$.

55.

- i. Show that $\lim_{x \to \infty} \frac{4\sqrt{x^2 + -\sqrt[3]{x^2 + 1}}}{3^4\sqrt{x^4 + 1} \sqrt[4]{x^3 + 1}} = \frac{4}{3}$.
- ii. Show that $\lim_{x \to \infty} \frac{\tan 2x \sin 2x}{4x^3} = 1$.
- iii. Show that $\lim_{x\to\infty} \frac{\sqrt{1+2x}-\sqrt{1-2x}}{\sin^{-1}x} = 2$.

56.

243. If
$$y = (Iny + a)x$$
, Show that $(xy - x^2)\frac{dy}{dx} = y^2$.

- If $y = \frac{\sec x}{b + \tan x}$, Show that $\frac{dy}{dx} = y \tan x y^2 \sec x$. If $y = \frac{k}{k + k \ln x + x}$, Show that $x \frac{dy}{dx} + y = y^2 \ln x$. 246.
- 247.
- If $y = x \cos x$, Show that $\frac{d^2y}{dx^2} \frac{2}{x} \frac{dy}{dx} + \left(\frac{x^2+2}{x^2}\right)y = 0$. 248.
- If $y = Ae^{-\beta x}\cos(kx+b)$, Show that $\frac{d^2y}{dx^2} 2\beta\frac{dy}{dx} + (k^2 + \beta^2)y = 0$. 249.
- If $y = e^{-tanx}$, Show that $\frac{d^2y}{dx^2} = (1 + \ln^2 y)(1 \ln y)^2 y$. 250.

255. Let $f(x) = \sin^{-1} x$,

4y = 0.

- i. Find $f^{(1)}(x)$, $f^{(2)}(x)$ and $f^{(3)}(x)$.
- ii. Find $f^{(1)}(0)$, $f^{(2)}(0)$ and $f^{(3)}(0)$
- 256. If $y = \sin^{-1} x + (\sin^{-1} x)^2$, show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 2$.
- 257. If $y = (a + bx)e^{-\lambda x}$, show that $\frac{d^2y}{dx^2} + 2\lambda \frac{dy}{dx} + \lambda^2 y = 0$ where a, b and λ are constants.
- 258. If $y = (ax^2 + bx + c)e^{-x}$, show that $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 0$.

263. If y = sinx, find $\frac{d^2y}{dx^2}$ in terms of t, $\frac{dy}{dt}$ and $\frac{d^2y}{dt^2}$. Hence convert the differential equation $\cos x \frac{d^2y}{dx^2} + sinx \frac{dy}{dx} - 4y \cos^3 x = 0$ into $\frac{d^2y}{dx^2} - \frac{d^2y}{dx^2} + sinx \frac{dy}{dx} - \frac{d^2y}{dx} + \frac{d^2y}{dx}$

- 264. If y = sinx, convert the differential equation $\frac{dy}{dx} 4y \cos^3 x = 0$ into $\frac{d^2y}{dx^2} 4y = 0$.
- 265. If $y = \tan x$, find $\frac{d^2y}{dx^2}$ in terms of t, $\frac{dy}{dt}$ and $\frac{d^2y}{dt^2}$. Hence if $2\tan x \frac{dy}{dx} + 4k^2 y \sec^2 x = 0$. Show that $\frac{d^2y}{dt^2} + 4k^2 y = 0$.

267. If
$$y = e^x \cos x$$
, show that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$.

268. If $y = x \sin \frac{1}{x}$, show that $x^4 \frac{d^2y}{dx^2} + y = 0$.

- 276. The parametric form of a curve is given by $x = at^2$, y = 2at. Find the first Derivative of the curve and hence find the gradients of the tangents drawn to the curve for corresponding values of t = 1, t = 3.
- It is given that $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ Find $\frac{dy}{dx}$ and find the value for $\frac{dy}{dx}$ when $\theta = \frac{\pi}{2}$, $\theta = \frac{\pi}{3}$.

v.
$$tan^2 x$$

sin x vi. х

viii.

$$\frac{\cos(px)}{gx}$$
 p, q ksh; fõ'

ix.

sec(3x + 1)

X.

$$\cot \sqrt{3x+1}$$

323. Differentiate the following funtions with respect to x.

 $\frac{3x-2}{x+2}$ i.

7x + 5ii. $\frac{}{(x-3)^2}$

 $(2x+3)^{\frac{1}{2}}$ iii. 3x - 2

 $(3x-7)^3$ iv. $\frac{}{(2x+1)^2}$

 $\frac{\sqrt{x}}{\sqrt{x}+2}$ v.

vi. px+q

329. Differentiate the following funtions with respect to x.

i.
$$\frac{\tan^{-1} x^2}{e^{x^2}}$$

ii.
$$\tan^{-1}\left(\frac{a\cos x + b\sin x}{\sqrt{a^2 + b^2}}\right)$$

iii.
$$3^x \sin^{-1}(x+1)^2$$

iv.
$$2^x \cos^{-1}(x+2)^2$$

$$V. \qquad \frac{3^x \sin x}{(x+2)^2 \tan^{-1} x}$$

$$Vi. \qquad \frac{4 \tan^{-1} 2x}{1 + 4x^2}$$

vii.
$$\sin^{-1}\left(\frac{p\sin x + q\cos x}{\sqrt{p^2 + q^2}}\right) p, q$$
 are constants

337. $f(x) = ax^3 + bx^2 + cx + d[a, b, c, d]$ are constants. Find f'(x) and state f'(x) in the format $f'(x) = A\{(x+B)^2 + C\}$ where A, B, C are constants. Hence if the following conditions are satisfied, find the values of a,b,c,d and draw a rough sketch of the curve y=f(x)

i. For
$$|x| > 1$$
, $f'(x) > 0$

341. If
$$x = 2t + \sin 2t$$
, $y = \cos 2t$, prove that $\frac{dy}{dx} = -\tan t$. Furthermore, prove that $\frac{d^2y}{dx^2} = -\frac{1}{4}$

If u, v are two functions of x, prove that $\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$. Furthermore, if 347. u,v,w are functions of x, obtain an expression for $\frac{d}{dx}(uvw)$.

349.

- i. Differentiate with respect to x.
 - a) $\sqrt{x^2 + 1} \sin 3x$
 - b) $\cos(\cos\sqrt{x})$
 - c) $\sqrt{\tan(x^2)}$
- ii.

ii. Use the first principle to differentiate
$$\frac{\sin x}{x}$$
.
iii. If $x^y = 3^{x-y}$, prove that $\frac{dy}{dx} = \frac{x \ln 3 - y}{x \ln 3x}$.

350.

353.

Explain the derivative of a function. Obtain the derivative of i. tan *x* using the first principle.

ii.

- a) Differentiate $\tan^{-1}\left(\frac{e^x}{\sqrt{1+x^2}}\right)$ with respect to x. b) Differentiate $\frac{\sin(\cos x)\log|1+x^4|}{x(x^2-1)}$ with respect to x.

354. In the equation y = f(x) the solution in terms of x, y is given by x = g(y). If $\frac{dy}{dx} = \frac{d}{dy}[g(y)] \neq 0$. Prove that $\frac{d}{dx}[f(x)] = \frac{1}{\frac{d}{dy}[g(y)]}$. Differentiate $y = \frac{1}{\frac{d}{dy}[g(y)]}$.

 $\sin^{-1} x$, $y = \tan^{-1} x$ with respect to x.

Also find the derivatives of $y = \sin^{-1} x$, $y = \tan^{-1} x$.

Show that the derivatives of the functions with respect to x,

$$2\sin^{-1}(x-1)$$
, $\frac{2\tan^{-1}\sqrt{x-1}}{(\sqrt{2}-x)}$, $\sin^{-1}2\sqrt{(2-x)(x-1)}$ is given by $\frac{1}{\sqrt{(2-x)(x-1)}}$.

355.

358.

- i. if y is a differentiable function of t and if t is a differentiable function of x show that $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$. Also show that $\frac{d}{dx}(\sin x) = \cos x$ furthermore use the identity $\cos x = \sin\left(\frac{\pi}{2} + x\right)$ and deduce that $\frac{d}{dx}(\cos x) = -\sin x$.
- ii. Use logarithm laws to differentiate the funtion $\left(4 + \frac{4}{x}\right)^x$.

ii. If $y = \sin^{-1}\frac{x}{b}$, where $-\frac{\pi}{2} < y < \frac{\pi}{2}$, -b < x < b find $\frac{dy}{dx}$. Also differentiate $(\alpha)(x^2+1)^{\frac{1}{2}}\sin^2 2x$ and $\sin^2\left(a\sin^{-1}\frac{x}{b}\right)$, -b < x < b with respect to x.

370.

If f, g are two differentiable funtions of x, show that $\frac{d}{dx}(fg) =$ $f\frac{dg}{dx} + g\frac{df}{dx}.$

Differentiate the following with respect to x,

- a) $e^{x^2} \sin 2x$
- b) $\sqrt{x} \sin^{-1}(2x 1)$ c) $\left(\frac{\sec x + \tan x}{\sec x \tan x}\right) \log_e |\sec x + \tan x|$

386.

389.

- i. Find the turning point of $f(x) = x^3(1+x)^{1/2}x > -1$ and draw the sketch of the graph.
- ii. Followings are the coordinates of a variable point (x, y) of the curve $x = t(1-t)^2$, $y = t^2(1-t)$.

In here, t is a variable parameter. Find the equation of the tangent drawn to the curve from the point where $t = \frac{1}{2}$. Show that the curve completely lies on one side of this line.

and the equation of the tangent drawn to the curve $x^3 + y^3 = 2xy$ at the point of $(1, 1)$. Show that the perpendicular drawn at this point meets the

- Show that the function $f(x) = \frac{x}{\log_e x}$, 409.
 - i. Increases in the range of $e < x < \infty$.
 - ii. Decreases in the range of 0 < x < e.

Past Papers 417.

426.

i. Using first principles, find the derivative of $f(x) = \sin x$ with respect to x

Deduce the derivative of $g(x) = \cos x$.

Differentiate

- a) $\sin[\ln(1+x^2)]$
- b) cos(sin x)

with respect to x

ii. Let $y = \sin k\theta \ cosec \ \theta$ and $x = cos\theta$, where k is a constant. Show that.

a)
$$(1-x^2)\frac{dy}{dx} - xy + k\cos k\theta = 0$$
,

b)
$$(1-x^2)\frac{d^2y}{dx^2} - 3x\frac{dy}{dx} + (k^2-1)y = 0.$$

iii. The tangent to the curve $y(1 + x^2) = 2$ at the point $P\left(3, \frac{1}{5}\right)$ meets the curve again at Q.

Find the coordinates of *Q*.

2009 A/L

427.

- a) Let $y = tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ and $z = tan^{-1}x$. Find $\frac{dy}{dz}$.
- b) Let $y = e^{msin^{-1}x}$, Where m is a constant. Show that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - m^2y = 0$.

431. A curve C is given by the equation $y = 4 - 4x + 3x^2 - x^3$. Find the equation of the tangent drawn to the curve C at the point (1,2) show that this tangent is perpendicular to the tangent drawn to the curve $y^2 = 4x$ at the point (1,2).

The gradient of the tangent drawn to the curve ${\sf C}$ at the point (1,2

2012 A/L

#