

A/L COMBINED MATHS Calculus II PRACTICAL APPLICATIONS OF

DIFFERENTIATION

Graphing & Practical Applications Sketch the graph for the equation $y = \frac{3-x^2}{x^2-1}$. 01. Sketch the graph for the equation $y = \frac{x^2 - 2x + 3}{x - 2}$. 02. Sketch the graph for the equation $y = x - \sqrt{x}$. 03.

ן t t	Two poles of heights 5m and 10m are 10m apart <mark>from each</mark> other. To keep two poles in equilibrium two strings are connected from the top of both p to a wedge fixed on the ground between the two poles. In order to minim

- 51. Find the cone with the maximum volume which can be contained by a sphere of radius a. if the volume of the cone is V find the maximum value for V.
- 52. Consider the area of the semi circle bounded by the circle $x^2 + y^2 = 7$ and the axis OX. Find the dimensions of the rectangle with the maximum area which can be contained in this semi circle.

59. Two squares of side length x are removed from vertices A and D from a rectangular laminar of length 16 m and width 4 m as shown in the diagram. From the vertices B and C, two rectangles with length x and width x+y is also removed from the laminar. By folding along the edges, a box of height x and base ABCD is made. Find the volume of this box. Also find the value of x such that the volume is maximized.

A man moves with a velocity $\frac{2\sqrt{3}}{5}ms^{-1}$ along a river bank starting from point A and reaches point B. From point B, he swims across the river of breadth 10 m with a velocity of 2 ms⁻¹ and reaches point C at the other bank of the river. The opposite point to C at the other river bank is D where AD is 10m. Obtain an expression for the time taken by the man to move from point A to C. In order to minimize this time, find the length of AB. Also find the minimum time

- 63. The center is C of a circular lake which has a radius $\sqrt{3}$ km. A man starting from point P has to reach a point R on the diameter PCR. In order to reach R, the man swims with a velocity $\sqrt{3}$ kmh⁻¹ starting from point P and arrives to point Q on to the bank of this lake. It is given that the angle $QPR <= \theta$. Thereafter, to reach R, the man walks along the bank of the lake with a velocity 2 kmh⁻¹. The time taken for the man to travel from P to R is T. Obtain an expression for T. In order for T to be maximum or minimum, find the location of Q. In order to maximize the time, find the length of the locus PQR.
- 64. A,B,C are three cities which are connected by two direct routes, AB and BC such that AB is 15 km, BC = 50 km and $ABC < = \frac{\pi}{2}$. There is a planned project to connect the city A to a point D which is located in route BC. A car can travel with a maximum velocity of 50 kmh⁻¹ along DC and with a maximum velocity of 40 kmh⁻¹ along the proposed route AD. If point D is located x km from A, find the time T(x) in hours, which a car takes to travel from A to C through D. You may assume that the car travels in its maximum velocities. Examine the sign of $\frac{dT}{dx}$ when x increases from 0 to 50km. Find the most suitable position for D in order for thr car to travel from A to C in the minimum amount of time.

84.	Find the maximum and minimum values of the following functions and sketch
	the graphs.
	$(a) \frac{1}{1} - \frac{4}{1}$ (b) $e^{x}(x^{2} - 3)$
	$(u) = \frac{1}{x-1} = \frac{1}{x-2}$ (b) $e^{-1} (x-3)$

Draw a sketch of the graph of $y = x^3$. Obtain the sketch of the graph of $y = x^4$ by using that. State the ideas of the shapes of the graphs of $y = x^{2n+1}$ and $y = x^{2n}$ where n is a positive integer. by the same set of argument.

90.

- i. Draw the sketch of the graph for the function $y = \frac{x}{x^2 + 1}$.
- ii. A cylindrical container is to be made by using a given uniform raw material. Show that the highest volume for that container can be there when its height is equals to the radius of its base.

Graphing & Practical Applications

What are the maximum and minimum values of y? Considering the intersection of the above curve and the line y = k, show that there are no real roots for the equation $(k - 1)^2 x^2 - 3kx + 2(k - 1) = 0$, if $-2(3\sqrt{2} + 4) < 1$

ii. When t is a parametry, the equation $x = \frac{t^2}{1+t^2}$, $y = \frac{t}{1+t^2}$ defines a curve. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point t of the curve. By this, find the stationary points and the nature of the curve.

Graphing & Practical Applications

103. Draw the curve given by the following parametric equations.

 $x = 2a\cos\theta - a\cos 2\theta$

 $y = 2a \sin\theta - a \sin 2\theta, \ (0 \le \theta \le \pi)$

Obtain a relationship between x and y, by removing θ from the above equations. How would the curve given by the equation derived without θ differ from the first curve?

- 104. A curve is defined by the following parametric equations.
 - $x = 2t^2 t^4$ $y = 3t^2 + 2t^3, -\infty < t < \infty$

Find the equations of the perpendicular and the tangent drawn to the curve at the point where t is parametric. Find the equations of those specially when

t = (-1, 0) and 1. Draw the parts of the curve in which t > 0 and t < 0 in seperate diagrams.

4.0.7	$(x-2)^2$
107.	A curve is given by $y = \frac{1}{x^2+4}$. Show that,
	i. $0 \le y \le 2$
	ii. when $y \to 1$, it is $x \to \pm \infty$
	By this means or others write the coordinates of the turning points of the
	curve, and then draw the sketch of it. Draw the sketch of the curve C given by $(x-2)^2$
	$y = \frac{(x-2)}{x^2+4}$ on the same diagram by using the curve C and the symmetrical
	properties. Find the area of S surrounded by the curve C and the lines $x =$
	2, $y = 1$.By this means or others deduce the area of S' , made by the line $x = 2$
	and the combined curve of curves C and C' in the region of $0 \le x \le 2$. Find the
	volume of the solid generated by the rotation of S' by the angle of π rad at the
	axis of $y = 1$.

108.

- 112. A particle moves in a velocity of v ms⁻¹ at a time of t s to the positive direction of Ox axis. It is given that $v = 3(4 3e^{-2t})$.
 - i. Show that $\frac{dv}{dt} = 2(12 v)$
 - ii. Obtain that $\left(\frac{v}{12-v}\right)\frac{dv}{dt} = 2v$ and $\frac{v}{12-v} = \frac{12}{12-v} 1$, when the particle is at x distance from 0. By this means, show that distance travelled by the particle is $\frac{1}{2}[12\log_e 2 3]m$, when its velocity increases from 6ms⁻¹ to 9ms⁻¹.

116. The diagram shows the curve $y = \frac{\log_e x}{x^2}$, x > 0

- i. Find the point at which the Ox axis is intersected by the curve.
- ii. Show that $\frac{dy}{dx} = \frac{1-2\log_e x}{x^3}$, and find the coordinates of the maximum point by that means.

iii. Find the values of
$$\frac{d^2y}{dx^2}$$
 and $\left[\frac{d^2y}{dx^2}\right]_{x=2}$

124. Find the value of $\lim_{x\to 0} \frac{\cos 3x - \cos x}{\cos 4x - \cos 2x}$. Differentiate the followings with respect to x,

 $\frac{\sin x}{\sqrt{\cos x}}$

i.

ii. x^4 tan 4x

In an isosceles triangle, two equal sides are such that AB = AC = a and $A = 2\theta$. Show that the radius of the inscribed circle of the triangle is $r = \frac{a \sin \theta \cos \theta}{1 + \sin \theta}$. If a is a constant and θ varies ($0 \le \theta \le 90$), then find that the maximum value for r, records when $\theta = \sin^{-1}\left(\frac{\sqrt{5}-1}{2}\right)$.

125.

 $t = \sqrt{100 + (20 - x)^2} + \frac{4x}{5}$, Where t is the time taken to reach A from D. Find the value of x when t is at its minimum.

126.

22

140.

a) By considering **only the first derivative** find the minimum and maximum values of $\frac{x^3}{x^4+27}$.

Sketch the graph of $y = \frac{x^3}{x^4+27}$. Hence, find for what values of k, the equation $\frac{kx^4x^3 + 27k = 0}{k}$, where k is real, has

- a) Two coincident real roots,
- b) Three coincident real roots,
- c) Two distinct real roots,
- d) No real roots.

145. In the given figure, ABCD is a trapezium with parallel sides BC and AD. Lengths of its sides, measured in centimetres are given by AB=CD=a, BC=b and AD=b+2x, where 0 < x < a. BE and CF are the perpendiculars drawn from the vertices B and C, respectively, on to the side AD.

Show that the area S (*x*) of the trapezium ABCD is given by $S(x)=(b+x)\sqrt{a^2 - x^2}$ in square centimetres. If $a = \sqrt{6}$ and b=4, show further that S(*x*) is maximum for a certain value of *x*, and find this value of *x* and the maximum area of the trapezium.

2015 A/L

146.

a) Let $f(x) = \frac{(x-3)^2}{x^2-1}$ for $x \neq \pm 1$. Show that f'(x), the derivative of f(x), is given by $\overline{f'(x)} = \frac{2(x-3)(3x-1)}{(x^2-1)^2}$. Write down the equations of the asymptotes of y = f(x).

Find the coordinates of the point at which the horizontal asymptote intersects the curve y = f(x)

b) A thin metal container, in the shape of a right circular cylinder of radius 5r cm and height *h* cm has a circular lid of radius 5r cm with a circular hole of <u>r_c</u>m radius r cm. (See the figure.) The volume of the container is given to be $245 \pi cm^3$. Show that the surface area $S \ cm^2$ of the container with the lid containing the hole is given by $S = 49\pi \left(r^2 + \frac{2}{r} \right)$ for r > 0. $5r\ cm$

Find the value of *r* such the *S* is minimum.

b) A bottle with a volume of $391\pi cm^3$ is to be made by removing a disc of radius r cm from the top face of a closed hollow right circular cylinder of radius 3rcm and height 5hcm, and fixing an open hollow right circular cylinder of radius r cm and height h cm, as shown in the figure. It is **given that** the total surface area S cm² of the bottle is $S = \pi r(32h + 17r)$. Find the value of r such that S is minimum.

149. (a) Let
$$f(x) = \frac{(2x-3)^2}{4(x^2-1)}$$
 for $x \neq \pm 1$.

Show that f'(x), the derivative of f(x), is given by

$$f'(x) = \frac{(2x-3)(3x-2)}{2(x^2-1)^2}$$
 for $x \neq \pm 1$. Sketch the graph of $y = f(x)$ indicating

the asymptotes, y-intercept and the turning points. Using the graph, find

all real values of *x* satisfying the inequality
$$\frac{1}{f(x)} \leq 1$$
.

(b) Let $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ for $x \neq 3$.

Show that f'(x), the derivative of f(x), is given by $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ for $x \neq 3$.

Sketch the graph of y = f(x) indicating the asymptotes, y - intercept and the turning points.

It is given that $f''(x) = \frac{18(x^2-33)}{(x-3)^5}$ for $x \neq 3$.

Find the x – coordinates of the points of inflection of the graph of y = f(x).

150.

a. Let
$$f(x) = \frac{x(2x-3)}{(x-3)^2}$$
 for $x \neq 3$.

Show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{9(1-x)}{(x-3)^3}$ for $x \neq 3$.

Hence, find the interval on which f(x) is increasing and the intervals on which f(x) is decreasing. Also, find the coordinates of the turning point of f(x).

It is given that $f''(x) = \frac{18x}{(x-3)^4}$ for $x \neq 3$.

Find the coordinates of the point of inflection of the graph of y = f(x). Sketch the graph of y = f(x) indicating the asymptotes, the turning point and the point of inflection.

