

A/L Combined Maths

Raj Wijesinghe

	If the circle $x^2 + y^2 = 9$ and straight line $y = \sqrt{3}x + c$ touches tangentially,
19.	

20. Show that the point P(4, -1) lies on the circle $S = x^2 + y^2 - 2x - 6y - 15 = 0$. Find the equation of the tangent drawn to the circle at the point P.

21. Show that the point Q(-2, 7) lies on the circle $S = x^2 + y^2 - 2x - 6y - 15 = 0$. Find the equation of the normal drawn to the circle C at the point Q.

- 27. Find the equation of the tangent chord to the circle $x^2 + y^2 + 4x 6y + 9$ = 0 relative to the point P(1, -2).
- 28. If the tangent chord drawn from the variable point P to the circle $S = x^2 + y^2 + 2x + 4y + 1 = 0$ is always going through the point Q(2,-3), show that the path of the point P is 3x y 3 = 0.
- 29. The tangent chord from the variable point P to the circle $S_1 = x^2 + y^2 16 = 0$ always touches the circle $S_2 = x^2 + y^2 4 = 0$. Show that the path of P can be shown by the equation of the circle $x^2 + y^2 64 = 0$.

- 37. Find the equations of the tangents to the circle $x^2 + y^2 9 = 0$ from the point P (-2,-3).
- 38. Find the equation of the tangent chord to the circle $S = x^2 + y^2 6x 6y + 9 = 0$ from the point P(-3, 3).

_			

56. Find the equation of the circle which is orthogonal to the circle $S = x^2 + y^2 + \frac{2x + 3y + \frac{15}{2} = 0}{2x + 3y + \frac{2}{2} = 0}$ and passing through the intersection points of the circles $S_1 = x^2 + y^2 + 2x + 6y - 4 = 0$ and $x^2 + y^2 - 9 = 0$.

Circle

- 77. Find the equation of the straight line which passes through the intersecting point of the lines l_1 , l_2 given in 76) and having an intercept of $\frac{5}{3}$.
- 78. Find the equation of the straight line which passes through the intersection point of the lines l_1 , l_2 given in 76) and parallel to the line 7x 3y + 2 = 0.
- 79. Find the equation of the straight line which passes through the intersection point of the lines l_1 , l_2 given in 76) and perpendicular to the line 7x + 8y + 3 = 0.

83. Do the points (2, -3), (-1, 5) lie on same side or opposite sides relative to the straight line x - y + 1 = 0.

- 103. Find the equation of the circle S₂ of center Q(8, 0) and touches the circle $S_1 = x^2 + y^2 \frac{12y + 11}{2} = 0$ externally.
- 104. The S_1 , S_2 and S_3 are represented by $S_1 = x^2 + y^2 4x 6y 12 = 0$, $S_2 = x^2 + y^2 10x 6y + 30 = 0$ and $S_3 = x^2 + y^2 20x 6y + 100 = 0$. Show that the circles
 - a) S_1 and S_2 touch each other internally.
 - b) S_1 and S_3 touch each other externally.
 - c) S_2 and S_3 touch each other externally.

Without solving the equations S_1 , S_2 and S_3 , show that the three circles contact each other in a common point.

105. The circles S_1 , S_2 and S_3 are represented by $S_1 = x^2 + y^2 - 9 = 0$, $S_2 = x^2 + y^2 - 12x + 27 = 0$ and $S_3 = x^2 + y^2 - 6x - \frac{6\sqrt{3}y}{6\sqrt{3}y} + 27 = 0$ respectively. The points 0, A and B respectively are the centers of them.

109. Find the equation of the circle which intersect the circles $S_1 = x^2 + y^2 + 6x + 4y + 8 = 0$, $S_2 = x^2 + y^2 + 8x + 6y + 12 = 0$ and $S_3 = x^2 + y^2 + 10x - 8y = 0$ orthogonally.

_
ł

141. Find the position of the points (2, 2), (1, 3), (1, 1) with respect to the circle $x^2 + y^2 - 8 = 0$.

149.	Find the condition for the two circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^2 + y^2 + 2g_1x +$
	$2g_2x - 2f_2y + c_2 = 0$ to touch each other. If they touch each other, show that the
	lines $2(g_1 - g_2) + (f_1 - f_2) + c_1 - c_2 = 0$ and $(f_1 - f_2) u - (g_1 - g_2) y + f_1g_2 - f_2g_1 = 0$

ar	e on each of the two	circles.	Show th	nat the t	wo circles	touch	each oth
ex	ternally and find the o	coordina	te of the	contact	point.		

I		
I		

171. The tangents passing through the points Q_1 , Q_2 which are on the circle $x^2 + y$
$+ 2gx + 2fy + c = 0$ are intersecting at the point $P_0 = (x_0, y_0)$. Show that the
equation of the tangent Q_1 , Q_2 relative to P_0 is $xx_0 + yy_0 + g(x + x_0) + f(y + y_0)$
$c = 0$. Prove that the tangents of the circles $x^2 + y^2 + 6y + 5 = 0$ and $x^2 + y^2 + 2$
+ 8y + 5 = 0, relative to the point (1,-2) coincide. Further, find the coordinate
of the point, such that the tangents of the above circles are same.

Circle	2	

210. The circle $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ intersects the line u = ax + by + c = 0. Explain $S + \lambda u = 0$. Find the requirement for the chord u = 0 of the circle $S \equiv 0$ to subtend 90 degrees at the origin.

Hence, show that the path of the base of the perpendicular drawn from origin to PQ is $2x^2 + 2y^2 + 2gx + 2fy + c = 0$ if the variable chord PQ of the circle S = 0 subtends a right angle at the origin.

	_

	-

- 231. The equation of a circular system is $x^2 + y^2 1 + 2\lambda (x y + 1) = 0$. Here, λ is a parameter. Show that,
 - a) The centers of circles are colinear.
 - b) There is a common center axis for the system of circles.
 - c) The center line is perpendicular to the center axis. Further, show that the equation of the system of circles, orthogonally intersect the system of circles given is $x^2 + y^2 2y + 1 + 2\mu (x + y) = 0$. Here, μ is a parameter.

Í
Ī

246. Show that the circles $S_1 \equiv x^2 + y^2 - 2x = 0$, $S_2 \equiv x^2 + y^2 - 10x - 6y + 18 = 0$ touch each other at the point P and find the equation of the common tangent. Show that the line y + 1 = 0 is also a common tangent. Find the radius of the circle which intersects the two circles perpendicularly and the center passing through the line y + 1 = 0.

255.		
	a)	Find the possible simplest form of the relationship between 2D

cartesian coordinates and radius a. Here, o and α are constants.

1	
I	
269.	Find the equation of the line <i>l</i> which has gradient -1 as the and passing
	through the point A(–2, 6). Show that the one tangent to the circle $x^2 + y^2 = 8$
	from the point A is <i>I</i> . Show that the coordinates of the contact point B of the
	line / and the circle is (2, 2). O is the origin. The base of the perpendicular

the sector se	B to AU is C.	The contact	t point of th	e other tan	gent to the	C11
from the po	ant A is D. Fin	a the coora	inates of th	e points C a	na D. Fina	the
angle BAD.						

275. Show that the circles $S = x^2 + y^2 - 2x - 6y + 1 = 0$, $S' = 3x^2 + 3y^2 - 21x + 2y + 35 = 0$ are positioned completely externally to each other. Find the

276.	The tangents which are passing through the points $\mathrm{Q}_1, \mathrm{Q}_2$ on the circle $\mathrm{x}^2 + \mathrm{y}^2$
	+ 2gx + 2fy + c = 0, meet at the point P ₀ = (x ₀ , y ₀). Show that the equation of
	the tangent Q ₁ , Q ₂ at the point P ₀ is $xx_0 + yy_0 + g(x + x_0) + f(y + y_0) + c = 0$.
	Prove that the tangents drawn from the point (1, –2) to the circles $x^2 + y^2 +$
	$6y + 5 = 0$ and $x^2 + y^2 + 2x + 8y + 5 = 0$ coincide. Further, find that there is
	another point such that the tangents corresponding to the circles mentioned
	above are same, and find its coordinates.
277.	
278.	
	a) Show that the polar equation $r = 2a \cos\theta$ represents a circle which is
	passing through the polar 0 and radius is a. what is the center of that
	circle? Show that from $r = 2a \cos(\theta - \alpha)$ and $r = 2b \sin(\theta - \alpha)$ represent
	two perpendicularly intersecting circle. Here, a, $b_{i\alpha}$ are constants.

286. If the two circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $x^2 + y^2 + 2g'x + 2f'y + c' = 0$ intersect orthogonally, show that 2gg' + 2ff' = c + c'. Let P and Q be the points on the circle $S \equiv x^2 + y^2 - a^2 = 0$ with the coordinates

(-a, 0) and (a cos 0, a sin 0) respectively. The chord PQ is extended to a point R so that PQ = QR. Find the coordinates of R and show that, as θ varies, R lies on a circle S'. Obtain the equation of S'. A third circle S'', which touches the y axis, intersects both circles S and S' orthogonally. Show that there are two such circle S'', and obtain their equations.

288. Show that the two circles with equations $x^2 + y^2 + 2gx + 2fy = 0$ and $x^2 + y^2 - 4r^2 = 0$ never touch each other externally but touch each other internally, if $g^2 + f^2 = r^2$. Find the coordinates of the point of contact in the latter case. Show that there are two circles, which pass through the origin and the point (a, 0), where 0 < a < 1, and touch the circle whose equation is $x^2 + y^2 - 4 = 0$. Find the coordinates of the points of contact. Also find the equation of the circle having these points as ends of a diameter.

					_
 	—				

304. Find the centre and the radius of the circle which passes through the origin 0 and the two points where the line y = 1 intersects the circle $x^2 + y^2 - 2x - 2y + 1 = 0$.

309. Let m ∈ ℝ Show that the point P≡ (0, 1) does not lie on the straight-line *l* given by y = mx. Show that the coordinates of any point on the straight line through P perpendicular to *l* can be written in the form (-mt, t + 1), where t is a parameter. Hence, show that the coordinates of the point Q, the foot of the perpendicular drawn from P to *l*. are given by $\left(\frac{m}{1+m^2}, \frac{m^2}{1+m^2}\right)$ Show that, as m varies, the point Q lies on the circle S is given by $x^2 + y^2 - y = 0$, and sketch the locus of Q in the xy-plane. Also, show that the point R ≡ $\left(\frac{\sqrt{3}}{4}, \frac{1}{4}\right)$ lies on S. Find the equation of the circle S' whose centre lies on the x-axis, and touches S externally at the point R. Write down the equation of the circle having the same centre as that of S' and touching S internally.

